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A Fast Gradient Method for Nonnegative Sparse
Regression With Self-Dictionary

Nicolas Gillis

Abstract— A nonnegative matrix factorization (NMF) can be
computed efficiently under the separability assumption, which
asserts that all the columns of the given input data matrix belong
to the cone generated by a (small) subset of them. The provably
most robust methods to identify these conic basis columns are
based on nonnegative sparse regression and self-dictionaries, and
require the solution of large-scale convex optimization problems.
In this paper, we study a particular nonnegative sparse regression
model with self-dictionary. As opposed to previously proposed
models, this model yields a smooth optimization problem, where
the sparsity is enforced through linear constraints. We show
that the Euclidean projection on the polyhedron defined by
these constraints can be computed efficiently, and propose a fast
gradient method to solve our model. We compare our algorithm
with several state-of-the-art methods on synthetic data sets and
real-world hyperspectral images.

Index Terms— Nonnegative matrix factorization, separability,
sparse regression, self dictionary, fast gradient, hyperspectral
imaging, pure-pixel assumption.

I. INTRODUCTION

IVEN a matrix M € R™" where each column of

M represents a point in a data set, we assume in this
paper that each data point can be well approximated using
a nonnegative linear combination of a small subset of the
data points. More precisely, we assume that there exists a
small subset  C {1,2,...,n} of r column indices and a
nonnegative matrix H € R’;" such that

M~ M(,K)H.

If M is nonnegative, this problem is closely related to nonnega-
tive matrix factorization (NMF) which aims at decomposing M
as the product of two nonnegative matrices W € R’" and
H € R}" with r < min(m,n) such that M ~ WH [1].
In the NMF literature, the assumption above is referred to as
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the separability assumption [2], and the aim is therefore to
finding a particular NMF with W = M (:, K).

There are several applications to solving near-separable
NMF, e.g., blind hyperspectral unmixing [3], [4], topic
modeling and document classification [5], [6], video
summarization and image classification [7], and blind source
separation [8]-[10].

A. Self Dictionary and Sparse Regression Based Approaches

Many algorithms have been proposed recently to solve the
near-separable NMF problem; see [11] and the references
therein. In hyperspectral unmixing, the most widely used
algorithms sequentially identify important columns of M, such
as vertex component analysis (VCA) [12] or the successive
projection algorithm (SPA) [13], [14]; see section IV for more
details. Another important class of algorithms for identifying
a good subset C of the columns of M is based on sparse
regression and self dictionaries. These algorithms are compu-
tationally more expensive but have the advantage to consider
the selection of the indices in K at once leading to the most
robust algorithms; see the discussion [11].

An exact model for nonnegative sparse regression with self
dictionary [7], [15] is

min || X|lrow,0 such that |[M — MX]|| <e, (1)
XeR""

T
where || X|l;ow,0 €quals to the number of nonzero rows of X,
and € denotes the noise level of the data M. Here, the norm in
which the residual M — M X is measured should be chosen in
dependence of the noise model. It can be checked that there
is a nonnegative matrix X with r nonzero rows such that
M MX if and only if there exists an index set K
of cardinality r and a nonnegative matrix H such that
M = M(:, K)H: The index set K corresponds to the indices
of the nonzero rows of X, and hence we have H = X (K, );
see [16, Sec. 3] or [15, Sec. I-B] for details.

In [7] and [15], the difficult problem (1) is relaxed to the
convex optimization problem

min || X]l14 st M —-MX| <e and X <1,
XeR™"

)

where || X114 :== > IX(, )llg. In [15], ¢ = +o0 is used
while, in [7], ¢ = 2 is used. The quantity |[X]|,, is the
¢1-norm of the vector containing the ¢, norms of the rows
of X. Because the ¢1 norm promotes sparsity, this model is
expected to generate a matrix X with only a few nonzero
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rows. The reason is that the {1 norm is a good surrogate for
the ¢y norm on the £ ball. In fact, the £; norm is the convex
envelope of the £y norm on the £, ball, that is, the £{; norm
is the largest convex function smaller than the £y norm on
the £ ball; see [17]. Hence for ¢ = 400 and X < 1, we
have || X||1,00 < [|X|lrow,0 so that (2) provides a lower bound
for (1). In practice, the constraint X < 1 is often satisfied; for
example, in hyperspectral imaging, the entries of X represent
abundances which are smaller than one. If this assumption is
not satisfied and the input matrix is nonnegative, it can be
normalized so that the entries of the columns of matrix H
(hence X) are at most one, as suggested for example in [15].
This can be achieved by normalizing each column of M so
that its entries sum to one. After such a normalization, we have
for all j

L= MG, Dl =IMXC Db = 1D MCROXE, )l
k

=D Xk DIMC O = 1XC, D,

kelC

since M and X are nonnegative.

The model (2) was originally proved to be robust to noise,
but only at the limit, that is, only for ¢ — 0, and assuming
no columns of M(:, K) are repeated in the data set [15].
If a column of M(:, K) is present twice in the data set, the
(convex) models cannot discriminate between them and might
assign a weight on both columns. (The situation is worsened
in the presence of more (near) duplicates, which is typical
in hyperspectral image data, for example). More recently,
Fu and Ma [18] improved the robustness analysis of the model
for ¢ = 400 (in the absence of duplicates).

Another sparse regression model proposed in [16] and later
improved in [19] is the following:

IM—MX| <e

trace(X) s.t (3)

min .
X3, j) = X(@i,i) <1Vi,j.

XeRY"
(The model can easily be generalized for non-normalized M,
see model (4)). Here sparsity is enforced by minimizing the
{1 norm of the diagonal of X as trace(X) = ||diag(X)||; for
X > 0, while no off-diagonal entry of X can be larger than
the diagonal entry in its row. Hence diag(X) is sparse if and
only if X is row sparse.

The model (3) is, to the best of our knowledge, the provably
most robust for near-separable NMF [19]. In particular, as
opposed to most near-separable NMF algorithms that require
M(:, K) to be full column rank, it only requires the necessary
condition that no column of M (:, K) is contained in the convex
hull of the other columns. More precisely, let us define the
conical robustness of a matrix W € R™” as

k= min min [|[W(, k) — W, {1,...,r}\ {kDx]1.

1<k<r xE]R:__I
We then say that W is x-robustly conical, and the following
recovery result can be obtained:

Theorem 1 [19, Th. 7]: Let M = M (:, K)H be a separable
matrix with M (:, IKC) being k-robustly conical and the entries

of each column of H summing to at most one, and let
M=M+N. If e :=maxi<j<,INC, j)ll1 <O (%) then the

model (3) allows to recover the columns of M(:, K) up to
error O (r%)

B. Contribution and Outline of the Paper

In the work [19] a robustness analysis of the model (3) was
given, which we here relate to the robustness of the model (2).
We also present a practical and efficient first-order optimiza-
tion method for (3) (in [19] no such method was given). More
precisely, our contribution in this work is threefold:

o In section II, we prove that both sparse regression mod-
els (2) and (3) are equivalent. This significantly improves
the theoretical robustness analysis of (2), as the results
for (3) directly apply to (2).

o In section III, we introduce a new model, very similar
to (3) (using the Frobenius norm, and not assuming
normalization of the input data), for which we propose an
optimal first-order method: the key contribution is a very
efficient and non-trivial projection onto the feasible set.
Although our approach still requires O (mn?>) operations
per iteration, it can solve larger instances of (3) than
commercial solvers, with n ~ 1000. We show the
effectiveness of our approach on synthetic data sets in
section IV-A.

« In section IV-B, we preselect a subset of the columns of
the input matrix and scale them appropriately (depending
on their importance in the data set) so that we can
apply our method meaningfully to real-world hyperspec-
tral images when n ~ 10°. We show that our approach
outperforms state-of-the-art pure pixel search algorithms.

II. EQUIVALENCE BETWEEN SPARSE
REGRESSION MODELS (2) AND (3)

We now prove the equivalence between the models
(2) and (3). We believe it is an important result because, as far
as we know, both models have been treated completely inde-
pendently in the literature, and, as explained in the Introduc-
tion, while model (2) is more popular [7], [15], [18], stronger
theoretical guarantees were provided for model (3) [19].

Theorem 2: Let ||-|| be a column wise matrix norm, that
is, |A| = Zi aillACG, D)l for some o; > 0 and some vector
norm ||-|lc. Then (2) is equivalent to (3) in the following sense:

o At optimality, both objective functions coincide,

o any optimal solution of (3) is an optimal solution of (2),

and

o any optimal solution of (2) can be trivially transformed

into an optimal solution of (3).
Proof: See Appendix A. 0

Theorem 2 implies that any robustness result for (2) applies
to (3), and vice versa. It is therefore meaningful to compare the
robustness results of [18] and [19]. It turns out that the results
in [19] are stronger because, as opposed to Fu and Ma [18],
it does not require the absence of duplicated columns (which
is a rather strong assumption); see Theorem 1. However, it is
interesting to note that, in the absence of duplicated columns,
both robustness results essentially coincide (the error bounds
are the same up to some constant multiplicative factors),
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Algorithm 1 Fast Gradient Method for Nonnegative Sparse
Regression With Self Dictionary (FGNSR)
Require: A matrix M € R™", number r of columns to

extract, a vector p € R}, whose entries are close to 1, a
penalty parameter y, and maximum number of iterations

maxiter.

Ensure: An set  C {1,...,n} of column indices such that
minHeRinHM — M(:;,K)H||F is small.
{Initialization}

g < 0.05; Y < 0y 3 X < V3 L < Omax(M)?
for K =1:maxiter do
Y, <Y;
VE(X)+ MTMX — MTM + pdiag(p);
{Projection on €2; see Section III-D}
Y + Po (X — $VF(X));
X Y+ Bp(Y —Y,), where 8 = %

such that a, > 0 and ai =(1- ak)ai_l;
9: end for
10: JC < postprocess(X,r); {The simplest way is to pick the r
largest entries of diag(X') as done in [16]. In the presence
of (near-)duplicated columns of M, one should use more
sophisticated strategies [19].}

A A S > s

namely [18, Th. 1] and [19, Th. 2]. We provide this result
here for completeness:

Theorem 3 [19, Th. 2]: Let M = M (:, K)H where M(:, K)
is k-robustly conical and where the entries of each column of
H are at most one. Let also M = M+N, and H (i, j) < p <1
forall 1 <i < m and j ¢ K (this is the condition that
there is no duplicates of the columns of M(:,K)). If € :
maxi<j<uINCG, N1 < 5522, then the model (3) allows to
recover the columns of M(:, IC) up to error €.

The advantage of the formulation (3) over (2) is that the
objective function is smooth. Moreover, as we will show in
Section III-D, projecting onto the feasible set can be made
efficiently (even when the model is generalized to the case
where the columns of the input matrix are not normalized).
Hence, we will be able to apply an optimal first-order method
of smooth convex optimization.

III. CONVEX MODEL WITHOUT NORMALIZATION
AND FAST GRADIENT METHOD

In this section, in order to be able to obtain a more practical
model that can be optimized using techniques from smooth
convex optimization, we derive a new model, namely (6),
closely related to (3) but where

o the assumption X < 1 is not necessary,

o ||.]] is the Frobenius norm, which is smooth and arguably

the most popular choice in practice, and

o Lagrangian duality is used to incorporate the error term

[|M — MX||% in the objective function.
Then, we apply a fast gradient method on (6) (Algorithm 1),
after having listed related algorithmic approaches to tackle
similar optimization problems.
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A. Avoiding Column Normalization

The model (3) can be generalized in case X £ 1, where
M = MX, without column normalization of M. The advan-
tage is twofold: column normalization (i) is only possible for
nonnegative input matrix, and (i) may introduce distortion
in the data set as it would be equivalent to consider that
the noise added to each data point (that is, each column
of M) is proportional to it [5]. If one wants to consider
absolute error (the norm of each column of the noise is
independent on the norm of the input data), then the input
matrix should not be normalized and the following model
should be considered [19]:

g{nig trace(X) such that |[|[M — MX||F <e. 4)
€
The set Q is defined as

Q:={X eRY" | Xi <L wiXij <w;X;iVi,j}, (5

where the vector w € R’jr are the column ¢ norms of M, that
is, wj = [[M(, j)ll1 for all j. The upper bounds X;; < %Xii
come from the fact that each weight used to reconstruct a data
point inside the convex cone generated by some extreme rays
cannot exceed the ratio of the £; norm of that data point to
each individual extreme ray.

Note that the optimization problem (4) is convex, and
it can be solved as a second-order conic program (SOCP)
in n? variables. This large number of variables even for
moderate values of n rules out the use of off-the-shelf SOCP
optimization software. In this section, we describe an optimal
first-order method to solve (4). A main contribution is in the
(non-trivial) projection onto the feasible set €.

B. Related Work

To solve a model similar to (3), Bittorf et al. [16] used a
stochastic subgradient descent method, with a non-smooth
objective function (they were using the component-wise
{1 norm of M — MX). Although the cost per iteration is
relatively low with O(n?) operations per iterations, the con-
vergence is quite slow.

To solve (2) with ¢ = 400 in [15] and ¢ = 2 in [7],
authors propose an alternating direction method of multipli-
ers (ADMM). However, ADMM is not an optimal first-order
method as the objective function converges at rate O(1/k)
vs. O(1/k?) for optimal first-order methods, where k is the
iteration number. Moreover, the cost per iteration of ADMM
is larger as it requires the introduction of new variables (one
variable Y of the same dimension as X, Lagrangian multipliers
and a parameter which is not always easy to tune).

Another optimal first-order method was proposed in [20].
However, it solves a rather different optimization problem,
namely

r)?ing diag(X) + BIMX — M — Q|3 + A Qll1,

where two regularization parameters have to be tuned while
the objective function is non-smooth, so that authors use a
local linear approximation approach to smooth the objective
function. They also require column normalization while our
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approach does not. Also, they point out that it would be good
to incorporate the constraints from (3), which we do in this
paper by developing an effective projection on the feasible set.

C. Fast Gradient Method for (4)

It is possible to solve (4) using commercial solvers that
are usually based on interior-point methods, such as Gurobi.
However, it is computationally rather expensive as there
are O(n2) variables, where n is the number of columns of M.

Moreover, it has to be noted that in the separable NMF
case, it is not crucial to obtain high accuracy solutions: the
main information one wants to obtain is which columns of
M are the important ones. Hence it is particularly meaningful
in this context to use first-order methods (slower convergence
but much lower computational cost per iteration).

The additional constraints that allows to take into account
the fact that the columns of M are not normalized makes
the feasible set more complicated, but we develop an efficient
projection method, that allows us to design an optimal first-
order method (namely, a fast gradient method).

The problem we propose to solve is

1
min F(X) = =M — MX||% + up” diag(X),  (6)
XeQ 2

where M € R™" is the input data matrix, and X € Q are the
basis reconstruction coefficients. Note that we have replaced
trace(X) with the more general term p’ diag(X) (they coin-
cide if p is the vector of all ones). The reason is twofold:
(1) it makes the model more general, and (2) it was shown
in [16] that using such a vector p (e.g., randomly chosen
with its entries close to one) allows to discriminates between
(approximate) duplicate basis vectors present in the data. The
penalty parameter 4 € R acts as a Lagrange multiplier. From
duality theory, there exists x (which depends on the data M),
such that models (4) and (6) are equivalent [21] (given that
p is the vector of all ones).

Algorithm 1 is a first-order method for minimizing F(X)
over Q, based on Nesterov’s fast gradient method [22]. Here
“fast” refers to the fact that it attains the best possible conver-
gence rate of O(1/k?) in the first-order regime. Because M is
not necessarily full rank (in particular rank(M) < r when M
is a r-separable matrix without noise), the objective function
of (6) is not necessarily strongly convex. However, its gradient
is Lipschitz continuous with constant L = Apax(M TM) =
omax (M)?, which is sufficent to guarantee the claimed conver-
gence rate.

The requested number of columns r in Algorithm 1 is
used only in the postprocessing step (line 10). Hence upon
termination the obtained matrix X can be used to extract
multiple NMFs, corresponding to different ranks, and to pick
the most appropriate one among them for the application at
hand.

The penalty parameter x in (6) is crucial as it balances
the importance between the approximation error |M — M X ||12F
and the fact that we want the diagonal of X to be as sparse
as possible. On one hand, if ux is too large, then the term
M- MX ||% will not have much importance in the objective
function leading to a poor approximation. On the other hand,

if u is too small, then |[M — MX||12F will have to be very
small and X will be close to the identity matrix. However,
in our experience, it seems that the output of Algorithm 1
is not too sensitive to this scaling. The main a reason is
that only the largest entries of (the diagonal of) X will be
extracted by the post-processing procedure while the most
representative columns of M remains the same independently
of the value of x. In other words, increasing x will have the
effect of increasing in average the entries of X but the rows
corresponding to the important columns of M will continue
having larger entries. Therefore the extracted index set /C will
remain the same.

To set the value of u, we propose the following heuristic
which appears to work very well in practice:

o Extract a subset /U of r columns of M with the fast
algorithm proposed in [14] (other fast separable NMF
algorithms would also be possible);

o Compute the corresponding optimal weight H,

H = argminZERin [|M—MC(, IC)Z||%,

using a few iterations of coordinate descent; see [23].
o Define Xo(K,:) = H and Xo(i,:) =0 for all i ¢ K.
IM—MXol%
pT diag(Xo) ’
terms in the objective function.

o Set u = to balance the importance of both

Note that if the noise level €, or an estimate thereof, is
given as an input, x4 can be easily updated in the course of
the gradient iteration so that |M—MX||r ~ e: If |[M—MX||
is too small (large) relative to € in the course of the gradient
iteration, u is simply increased (decreased), and the method is
restarted. Of course these adjustments should be carried out in
a convergent scheme, say, geometrically decreasing, in order
to maintain convergence of Algorithm 1.

Remark 1: Algorithm 1 can be directly generalized to any
other smooth norm for which the gradient is Lipschitz contin-
uous and can be computed efficiently.

D. Euclidean Projection on Q

In Algorithm 1 we need to compute the Euclidean projection
of a point X € R™" on the set Q from Equation (5),
denoted Pq. Recall that for a convex subset C € R" of
an Euclidean vector space, a function ¢ : R" — C is an
Euclidean projection on C if for all x € R”

x =@ (x)| = min|lx — z]|.
zeC

We describe in Appendix B how to compute this projec-
tion efficiently. More precisely, we show how to solve the
problem minzeq||X — F||F in On? logn) operations. In the
unweighted case, that is, w; = 1 for all 1 < j < n, our
algorithm is similar to the one described in [16], but the
inclusion of non-unit weights makes the details very much
different. The worst case bound of O(n* logn) operations will
typically overestimate the computational cost if appropriate
data structures are used. This is explained in Remark 3,
Appendix B.
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TABLE I
COMPLEXITY COMPARISON FOR A m-BY-n INPUT MATRIX

I FLOPs [ Memory | Parameters | Normalization | Run time in sec. IV-A |
SPA 2mnr + O(mr?) O(mn) r Yes < 0.01s
XRAY O(mnr) O(mn) r No 0.03s
SNPA O(mnr) O(mn) r Yes 0.10s
SOCP (Gurobi, IPM) O(nb) O(n*) IN||F No 2.78s
FGNSR O(mn?) O(mn+n2) | ror|N|r No 0.09s

E. Computational Cost

In order to find the asymptotic computational cost of
Algorithm 1, we analyze the three main steps as follows.

Line 2: The maximum singular value of an m-by-n matrix
can be well approximated with a few steps of the
power method, requiring O (mn) operations.

The matrix M” M should be computed only once
at a cost of O (mn?) operations. If m > 2n, then
computing (M” M)X requires O (n3) operations.
Otherwise, one should first compute M X at a cost
of O (mn?) operations and then M” (MX) at a cost
of O (mnz) operations (the total being smaller than
n3 if m < 2n).

The projection onto Q of an n-by-n matrix X requires
@ (n2 log n) operations (the logn factor comes from
the fact that we need to sort the entries of each row
of X); see Section III-D for the details about the pro-
jection step. Note that each row of X can be projected
independently hence this step is easily parallelizable.
Moreover, many rows of X are expected to be all-
zeros and their projection is trivial.

Line 5:

Line 7:

Hence the number of operations is in O(mn?+n?logn), and
since we typically have m > logn, this reduces to O (mnz)
operations.

The computational cost could potentially be decreased using
random projections of the data points to reduce the dimen-
sion m of the input matrix; see, e.g., [24], [25]. It would be
interesting to combine these techniques with Algorithm 1 in
future work.

IV. NUMERICAL EXPERIMENTS

We now study the noise robustness of Algorithm 1 numeri-
cally, and compare it to several other state-of-the-art methods
for near-separable NMF problems on a number of hyper-
spectral image data sets. We briefly summarize the different
algorithms under consideration as follows.

1) Successive projection algorithm (SPA). SPA extracts
recursively » columns of the input matrix M. At each
step, it selects the column with the largest {> norm,
and projects all the columns of M on the orthogonal
complement of the extracted column [13]. SPA was
shown to be robust to noise [14]. SPA can also be
interpreted as a greedy method to solve the sparse
regression model with self dictionary [26].

2) XRAY. It recursively extracts columns of the input unnor-
malized matrix M corresponding to an extreme ray of
the cone generated by the columns of M, and then

projects all the columns of M on the cone generated
by the extracted columns. We used the variant referred
to as “max’ [5].

Successive nonnegative projection algorithm (SNPA).
A variant of SPA using the nonnegativity constraints in
the projection step [27]. To the best of our knowledge,
it is the provably most robust sequential algorithm for
separable NMF (in particular, it does not need M (: K)
to be full rank).

Exact SOCP solution. We solve the exact model (4)
using the SOCP solver of Gurobi,! an interior
point method. The obtained solution will serve as a
“reference solution”.

FGNSR. A Matlab/C implementation of Algorithm 1,
which is publicly available.?

3)

4)

5)

Our comparison does not include algorithms using linear
functions to identify vertices (such as the pure pixel index
algorithm [28] and vertex component analysis [12]) because
they are not robust to noise and do not perform well for the
challenging synthetic data sets described hereafter; see [14].

In all our experiments with FGNSR and the exact SOCP
solution to (4) we use the simplest postprocessing to extract
the sought for index set /C from the solution matrix X in (4):
We always pick the indices of the r largest diagonal values
of X (see final step in Algorithm 1).

Table I summarizes the following information for the dif-
ferent algorithms: computational cost, memory requirement,
parameters, and whether the H is required to be column
normalized. The FLOP count and memory requirement for
the exact solution of the SOCP via an interior-point method
depends on the actual SOCP formulation used, as well as on
the sparsity of the resulting problem. In any case, they are
orders of magnitudes greater than for the other algorithms.

We complement these information with the average wall
clock run times for the small “middlepoint” matrices from
Section IV-A (m = 50, n = 55) in the last column. More run
time results are shown in Section IV-B.

In the following section IV-A we study numerically the
noise robustness of the model (6) on an artificial dataset, and
in section IV-B we compare the methods from above to real-
world hyperspectral image data sets.

A. Robustness Study on Synthetic Datasets

The data set we consider is specifically designed to test
algorithms for their robustness against noise. We set m = 50,

1 https://www.gurobi.com
Zhttps://github.com/rluce/FGNSR
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n = 55 and r =
r-separable matrix

10. Given the noise level €, a noisy

M =WH+ N e R™" (7)

is generated as follows:

o Each entry of the matrix W is generated uniformly at
random in the interval [0, 1] (using the rand function of
MATLAB), and each column of W is then normalized so
that it sums to one.

e The first r columns of H are always taken as the
identity matrix to satisfy the separability assumption.
The remaining r(rT_l) = 45 columns of H contain all
possible combinations of two nonzero entries equal to
0.5 at different positions. Geometrically, this means that
these 45 columns of M are the middle points of all the
pairs from the columns of W.

o No noise is added to the first » columns of M, that is,
N(:, j)=0forall 1 < j <r, while all the other columns
corresponding to the middle points are moved towards
the exterior of the convex hull of the columns of W.
Specifically, we set

NG, j)=M(C,j)—w, forr+1<j<n,
where w is the average of the columns of W (geometri-
cally, this is the vertex centroid of the convex hull of the
columns of W). Finally, the noise matrix N is scaled so
that it matches the given noise level |N||F = €.

Finally, in order to prevent an artificial bias due to the ordering
in which H is constructed, the columns of M are randomly
permuted. We give the following illustration of this type of
data set (with m = r = 3):

The shaded area shows the convex hull of W, and the arrow
attached to the middle points indicate the direction of the noise
added to them. With increasing noise level €, any algorithm
for recovering the conic basis W will eventually be forced to
select some displaced middle points, and hence will fail to
identify W, which makes this data set useful for studying the
noise robustness of such algorithms.

In order to compare the algorithms listed at the beginning of
the section, two measures between zero and one will be used,
one being the best possible value and zero the worst: given a
set of indices IC extracted by an algorithm, the measures are
as follows:

e MRSA. We compute the mean-removed spectral angle
between a selected basis column w and the true basis

column w,, according to

w—u'),w*—zb*))
b

<
arccos ( - -
fw— @llw, — .

and normalizing the result to the interval [0, 100] (a value
of zero is a perfect match). In order to obtain a single
number for a given computed basis matrix W we take
the mean of all individual MRSAs.
o Relative approximation error. It is defined as
~ ming=o|M — M, K)H ¢
IMIF

(Taking H = 0 gives a measure of zero).

1.0

Figure 1 shows these two measures over a series of data sets
over increasing noise level €. For each noise level, a random
middle point data set as described above was generated 25
times, and the average of the respective measure over this
sample yields one data point at noise level €.

Algorithm 1 is clearly superior to all other algorithms,
and recovers the true conic basis even at quite large noise
levels. With the heuristic choice for the multiplier u (see
Section III-C), the robustness is still slightly inferior to
the exact SOCP solution. The results labelled “FGNSR,
dynamic” refers to a variant of Algorithm 1 where u is
heuristically adjusted in the course of the gradient iteration so
that |M — MX|r ~ €. (Similarly, one could steer x4 towards
a prescribed value of trace(X)).

Note that by construction the ¢1 norm of all the columns in
H in (7) is 1.0, which is in fact a requirement by for some
the algorithms considered here (see Table I). It is an important
feature of Algorithm 1 that it is also applicable if the columns
of H are not normalized. We now study this case in more
detail.

Consider the following slight variation of the middle point
data from above: Instead of placing the middle points by
means of a convex combination of two vertices, we now allow
for conic combination of these pairs, i.e., the middle point
will be randomly scaled by some scalar in [a~L, a] (we take
o = 4). The following picture illustrates these scaled middle
point data:

We compare the algorithms listed at the beginning of this
section on this data set exactly as described above. the results
are shown in Figure 2. The results labeled “normalize, SPA”
and “normalize, FGNSR” refer to £1-normalizing the columns
of the input matrix M prior to applying SPA and FGNSR,
respectively. From the results it is clear that FGNSR is by far
the most robust algorithm in this setting.
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Robustness study of various near-separable algorithms on the scaled middle point set (see Sec. IV-A). The show data is analogous to the data in

Figure 1. The results for SNPA are not shown here to allow for a cleaner presentation; they are very similar to the ones for SPA.

B. Blind Hyperspectral Unmixing

A hyperspectral image (HSI) measures the fraction of light
reflected (the reflectance) by the pixels at many different
wavelengths, usually between 100 and 200. For example,
most airborne hyperspectral systems measure reflectance for
wavelengths between 400nm and 2500nm, while regular RGB
images contain the reflectance for three visible wavelengths:
red at 650nm, green at 550nm and blue at 450nm. Hence,
HSI provide much more detailed images with information
invisible to our naked eyes. A HSI can be represented as a
nonnegative m-by-n matrix where the entry (i, j) of matrix M
is the reflectance of the jth pixel at the ith wavelength, so
that each column of M is the so-called spectral signature of
a given pixel. Assuming the linear mixing model, the spectral
signature of each pixel equals the linear combination of the
spectral signatures of the constitutive materials it contains,

referred to as endmembers, where the weights correspond
to the abundance of each endmember in that pixel. This is
a simple but natural model widely used in the literature.
For example, if a pixel contains 60% of grass and 40% of
water, its spectral signature will be 0.6 times the spectral
signature of the grass plus 0.4 times the spectral signature
of water, as 60% is reflected by the grass and 40% by the
water. Therefore, we have

-
M(, j)=> W KkHK, j)+ NG j),
k=1
where M(:, j) is the spectral signature of the jth pixel, r is
the number of endmembers, W(:, k) is the spectral signature
of the kth endmember, H (k, j) is the abundance of the kth
endmember in the jth pixel, and N represents the noise (and
modeling errors). In this context, the separability assumption is
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equivalent to the so-called pure-pixel assumption that requires
that for each endmember there exists a pixel containing only
that endmember, that is, for all k, there exists j such that
MC(, j) = W(, k).

The theoretical robustness results of near-separable NMF
algorithms do not apply in most cases, the reasons being
that (i) the noise level is usually rather high, (ii) images
contain outliers, (iii) the linear mixing model itself is incorrect
(in particular because of multiple interactions of the light with
the surface, or because of its interaction with the atmosphere),
(iv) the pure-pixel assumption is only approximately satisfied
(or only some endmembers have pure pixels), and (v) the
number of endmembers is unknown (and usually endmembers
in small proportion are considered as noise); see [3] and the
references therein.

However, near-separable NMF algorithms (a.k.a. pure-pixel
search algorithms) usually allow to extract pure (or almost
pure) pixels and are very popular in the community; for exam-
ple NFIND-R [29] or vertex component analysis (VCA) [12].
They can also be particularly useful to initialize more sophisti-
cated method not based on the pure-pixel assumption; see [4].

For most HSI, n is of the order of millions, and it is
impractical to solve (6) with either our fast gradient method
or even the interior point solver of Gurobi, as we did in
Section IV-A. In the next section, we adopt a strategy similar
to that in [15] where a subset of pixels is first selected as
a preprocessing step. Then, we apply our model (6) on that
subset using an appropriate strategy which is described in the
next section.

1) Subsampling and Scaling of HSI’s: A natural way to
handle the situation when n is large is to preselect a subset
of the columns of M that are representative of the data set.
In [15], authors used k-means to identify that subset. However,
k-means has several drawbacks: it cannot handle different
scaling of the data points, and scales badly as the number
of clusters increases, running in O(mnC) where C is the
number of clusters to generate. A much better alternative, that
was specifically designed to deal with HSI, is the hierarchical
clustering procedure developed in [30]. The computational
cost is O(mnlog, C) (given that it generates well-balanced
clusters).

Keeping only the centroids generated by a clustering algo-
rithm is a natural way to subsample HSI. However, it is
important to take into account the importance of each centroid,
that is, the number of data points attached to it. Let C be
the index set corresponding to the centroids M(:,C) of the
extracted clusters. For |C| sufficiently large, each pixel will be
relatively close to its centroid: mathematically, for all j, there
exists k € C such that M(:, j) &~ M(:, k). If we only allow
the centroids in the dictionary and denote X € RICLICT the
corresponding weights, the error term can be approximated by

1M — MG, KX |3 = D IMCG. j) = MG KX G DI
j=1

~ D MG k) — MG, K)X G, R) 17
keC

= D IVmMC, k) — M, K)X|7,
keC
where nj the number of pixels in the kth cluster.

Therefore, in this section, we apply our model only to the
matrix M (:, C) where each centroid is scaled according to the
square root of the number of points belonging to its cluster.
This allows us to take into account the importance of the
different clusters. For example, an outlier will correspond to a
cluster with a single data points (provided that |C| sufficiently
large) hence its influence in the objective function will be
negligible in comparison with large clusters.

Postprocessing of X: In the synthetic data sets, we
identified the subset /C using the r largest entries of X.
It worked well because (i) the data sets did not contain any
outlier, and (ii) there were no (near-)duplicated columns in the
data sets. In real data sets, these two conditions are usually not
met. Note however that the preprocessing clustering procedure
aggregates (near-)duplicated columns. However, if a material is
present in very large proportion of the image (e.g., the grass in
the Urban data sets; see below), several clusters will be made
mostly of that material.

Therefore, in order to extract a set of column indices from
the solution matrix X (see Algorithm 1, line 10), we will use
a more sophisticated strategy.

The ith row of matrix X provides the weights necessary
to reconstruct each column of M using the ith column of M
(since M ~ MX), while these entries are bounded by the
diagonal entry X;;. From this, we note that

(i) If the ith row corresponds to an outlier, it will in general
have its corresponding diagonal entry X;; non-zero but
the other entries will be small (that is, X;; j # i).
Therefore, it is important to also take into account off-
diagonal entries of X in the postprocessing: a row with
a large norm will correspond to an endmember present
in many pixels. (A similar idea was already proposed in
[14, Sec. 3].)

(ii) Two rows of X that are close to one another (up to
a scaling factor) correspond to two endmembers that
are present in the same pixels in the same proportions.
Therefore, it is likely that these two rows correspond to
the same endmember. Since we would like to identify
columns of M that allow to reconstruct as many pixels
as possible, we should try to identify rows of X that are
as different as possible. This will in particular allow us
to avoid extracting near-duplicated columns.

Finally, we need to identify rows (i) with large norms
(ii) that are as different as one another as possible. This can be
done using SPA on X7 : at each step, identify the row of X with
the largest norm and project the other rows on its orthogonal
complement (this is nothing but a QR-factorization with col-
umn pivoting). We observe in practice that this postprocessing
is particularly effective at avoiding outliers and near-duplicated
columns (moreover, it is extremely fast).

2) Experimental Setup: In the following sections, we
combine the hierarchical clustering procedure with our near-
separable NMF algorithm and compare it with state-of-the-art
pure-pixel search algorithms (namely SPA, VCA, SNPA,
H2NMF and XRAY) on several HSI’s. We have included
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TABLE II

NUMERICAL RESULTS FOR THE URBAN HSI
(THE BEST RESULT IS HIGHLIGHTED IN BOLD)

r=26 r=238

Time (s.) | Rel. error Time (s.) | Rel. error
VCA 1.02 18.05 1.05 22.68
VCA-100 0.05 6.67 0.07 4.76
VCA-500 0.03 7.19 0.09 7.25
SPA 0.26 9.58 0.32 9.45
SPA-100 <0.01 9.49 <0.01 5.01
SPA-500 <0.01 10.05 <0.01 8.86
SNPA 13.60 9.63 23.02 5.64
SNPA-100 0.10 11.03 0.15 6.17
SNPA-500 0.15 10.05 0.25 8.86
XRAY 28.17 7.50 95.34 6.82
XRAY-100 0.11 6.78 0.17 6.57
XRAY-500 0.15 8.07 0.28 7.36
H2NMF 12.20 5.81 14.92 547
H2NMF-100 0.16 7.11 0.23 6.14
H2NMEF-500 0.27 5.87 0.37 5.68
FGNSR-100 2.73 5.58 2.55 4.62
FGNSR-500 40.11 5.07 39.49 4.08

vertex component analysis (VCA) [12] because it is extremely
popular in the hyperspectral unmixing community, although
it is not robust to noise [14]. VCA is similar to SPA except
that (i) it first performs dimensionality reduction of the data
using PCA to reduce the ambient space to dimension r, and
(ii) selects the column maximizing a randomly generated
linear function.

Because the clustering procedure already does some work
to identify candidate pure pixels, it could be argued that the
comparison between our hybrid approach and plain pure-pixel
search algorithms is unfair. Therefore, we will also apply SPA,
VCA, XRAY, H2NMF and SNPA on the subsampled data
set. We subsample the data set by selecting 100 (resp. 500)
pixels using H2NMF, and denote the corresponding algorithms
SPA-100 (resp. SPA-500), VCA-100 (resp. VCA-500), etc.

Because it is difficult to assess the quality of a solution on
a real-world HSI, we use the relative error in percent: given
the index set IC extracted by an algorithm, we report

ming>ol|M — M(, K)H||r
M| F

100 ,
where M is always the full data set.

The MATLAB code used in this study is available,? and all
computations were carried out with MATLAB-R2015b on a
standard Linux/Intel box.

3) Data Sets and Results: We will compare the different
algorithms on the following data sets:

o The Urban HSI* is taken from HYper-spectral Digital
Imagery Collection Experiment (HYDICE) air-borne sen-
sors, and contains 162 clean spectral bands where each
image has dimension 307 x 307. The corresponding
near-separable nonnegative data matrix M therefore has
dimension 162 by 94249. The Urban data is mainly
composed of 6 types of materials: road, dirt, trees, roofs,
grass and metal (as reported in [31]).

3 https://sites.google.com/site/nicolasgillis/
4http://www‘erdc‘usace.armymil/
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TABLE III

NUMERICAL RESULTS FOR THE SAN DIEGO HSI
(THE BEST RESULT IS HIGHLIGHTED IN BOLD)

r=28 r =10
Time (s.) | Rel. error Time (s.) | Rel. error
VCA 1.71 7.46 1.79 9.46
VCA-100 0.07 8.49 0.12 6.08
VCA-500 0.06 9.19 0.13 6.29
SPA 0.53 12.62 0.61 7.01
SPA-100 0.03 8.49 0.01 5.83
SPA-500 <0.01 12.64 <0.01 6.61
SNPA 38.95 12.84 58.45 7.67
SNPA-100 0.22 8.49 0.20 6.90
SNPA-500 0.25 12.64 0.48 6.47
XRAY 93.29 13.06 243.40 12.62
XRAY-100 0.14 8.68 0.21 5.12
XRAY-500 0.19 13.17 0.35 6.82
H2NMF 21.51 4.75 24.42 4.28
H2NMF-100 0.30 6.85 0.22 5.61
H2NMEF-500 0.33 6.78 0.38 5.75
FGNSR-100 2.55 3.73 2.47 3.40
FGNSR-500 38.70 4.05 38.28 3.40
500
—Trees
—— Roof tops |
Grass
400 r —Road 1
- Roof tops II
Dirt
300 r b
200 r ,
100 r
O 1 1 1
0 50 100 150
Spectral band no.
Fig. 3. Endmembers of the Urban dataset obtained from FGNSR after

preprocessing with 500 clusters.

o The San Diego airport HSI is also from the HYDICE
air-borne sensors. It contains 158 clean bands, with
400 x 400 pixels for each spectral image hence M €
Rfoooowsg There are about eight types of materials:
three road surfaces, two roof tops, trees, grass and dirt;
see, e.g., [30].

o The Terrain HSI data set is constituted of 166 clean bands,
each having 500 x 307 pixels, and is composed of about
5 different materials: road, tree, bare soil, thin and tick

grass.’

Tables II-TV show the relative error attained by the different
algorithms on the data sets “Urban” (r = 6 and (r = 8§),
“San Diego” (r = 8 and r = 10), and “Terrain” (r = 5
and r = 6). The reported time refers to the run time of the
algorithms, without the preprocessing step.

We observe that FGNSR-100 and FGNSR-500 perform
consistently better than all the other algorithms, although, as
expected, at a higher computational cost than SPA and VCA.

3 http://www.way2c.com/rs2.php
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Fig. 4. Abundance maps corresponding to the endmembers extracted by FGNSR-500 for the Urban HSI (r = 6). From left to right, top to bottom: (i) trees,

(ii) roof tops I, (iii) grass, (iv) road, (v) roof tops II, (vi) dirt.

TABLE IV

NUMERICAL RESULTS FOR THE TERRAIN HSI
(THE BEST RESULT IS HIGHLIGHTED IN BOLD)

r=2>5 r==6

Time (s.) | Rel. error || Time (s.) | Rel. error
VCA 1.65 10.92 1.67 6.22
VCA-100 0.02 5.59 0.03 7.33
VCA-500 0.03 5.77 0.03 5.57
SPA 0.38 5.89 0.43 4.81
SPA-100 <0.01 4.74 0.01 3.95
SPA-500 0.01 4.83 0.01 4.63
SNPA 17.54 5.76 24.28 4.60
SNPA-100 0.10 5.75 0.11 5.65
SNPA-500 0.10 4.83 0.13 4.78
XRAY 33.63 5.39 73.91 5.17
XRAY-100 0.07 4.15 0.12 4.13
XRAY-500 0.09 5.21 0.19 4.97
H2NMF 18.23 5.09 20.92 4.85
H2NMEF-100 0.15 4.72 0.17 4.39
H2NMF-500 0.23 543 0.29 5.35
FGNSR-100 4.23 3.34 2.63 3.21
FGNSR-500 40.29 3.68 40.13 3.39

We summarize the results as follows.

o For the Urban HSI with r = 6 (resp. r = 8),
FGNSR-100 provides a solution with relative error
5.58% (resp. 4.62%) and FGNSR-500 with relative error
5.07% (resp. 4.08%), the third best being VCA-100 with
5.94% (resp. SPA-100 with 5.01%).

o For the San Diego airport HSI with » = 8 (resp. r = 10),
FGNSR-100 provides a solution with relative error
3.73% (resp. 3.40%) and FGNSR-500 with relative error
4.05% (resp. 3.40%), the third best being H2NMF with
4.75% (resp. XRAY-100 with 5.12%).

o For the Terrain HSI with r = 5 (resp. r = 0),
FGNSR-100 provides a solution with relative error 3.34%
(resp. 3.21%) and FGNSR-500 with relative error 3.68%
(resp. 3.39%), the third best being XRAY-100 with
4.15% (resp. SPA-100 with 3.95%).

It is interesting to note that, in most cases, near-separable
algorithms applied on the subset of columns identified by
H2NMF perform much better than when applied on the full
data set. The reason is that these algorithms tend to extract
outlying pixels which are filtered out by the subsampling
procedure (especially when the number of clusters is small).

We show the computed endmembers for the “Urban” data
set in Figure 3, and the corresponding abundance maps for
each of the species is shown in Figures 4.

To conclude, we have observed on three data sets that
FGNSR-100 and FGNSR-500 are able to identify the best
subset of columns to reconstruct the original input image in
all cases, while its computational cost is reasonable.

Remark 2: Note that we also compared the algorithms on
the widely used Cuprite data set but the results are not very
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interesting as most algorithms find very similar solutions in
terms of relative error. The reason is that the data is not
contaminated with outliers and spectral signatures are rather
similar in that data set. For example, for r = 15, all algorithms
have relative error in the interval [1.39,1.99]%, and, for
r = 20, in the interval [1.35,1.84]%.

V. CONCLUSION AND FURTHER WORK

In this paper, we analyzed a robust convex optimization
model for dealing with nonnegative sparse regression with
self dictionary; in particular showing its close connection with
the model proposed in [15]. We then developed an optimal
first-order method to solve the problem. We showed that
this approach outperforms standard near-separable NMF algo-
rithms on synthetic data sets, and on real-world HSI’s when
combined with a hierarchical clustering strategy. Moreover, we
observed that preselecting a small number of good candidate
allows all near-separable NMF algorithms to perform much
better.

The model (6) (and the corresponding Algorithm 1) can be
easily generalized to handle any dictionary D, changing the
model to

min trace(X) such that |M — DX||r <,
XeQY

where
Q =X [0, 11" | Xij IDC, i)l < XiiIMC, j)IIhVi, j).

It would therefore be an interesting direction of further
research to analyze and apply this model in other contexts.

Further it would be of interest to study the robust-
ness of Algorithm 1 if combined with random projections
(see [24], [25]), and to consider non-additive noise models,
e.g., spectral variability in the context of HSI [32].

APPENDIX A
PROOF OF THEOREM 2

Observe that

« Any feasible solution of (3) is a feasible solution of (2):
in fact, the only difference between the feasible domains
are the additional constraints X;; < X;; for all i, j.

o The objective function of (2) is larger than the one of (3):
in fact, by definition, trace(X) < [|X||1,00. Moreover,
the two objective functions coincide if and only if
Xii = max; Xij for all i.

These observations imply that the optimal objective function
value of (3) is larger than the one of (2) (since any feasible
solution X of (3) is feasible for (2) and satisfies trace(X) =
1X100).

Therefore, if we can transform any optimal solution X*
of (2) into a feasible solution X' of (3) with the same objective
function value, XT will be an optimal solution of (3) and the
proof will be complete.

Let X* be any optimal solution of (2). If X* = 0, then
X* is trivially feasible for (3) and the proof is complete.

So assume X* # 0. We will show by contradiction that
IM — MX*| €, so assume that |M — MX*|| < e.
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By continuity of norms there exists 0 < J < 1 so that
IM—M(@OX™*)| < e. The matrix 6X* is a feasible solution for
(2) since 0 < 0X* < X* <1 while |[0X*||1,00 = | X*[I1,00 <
| X*]I1,00, @ contradiction to the optimality of X*.

Assume that X;ki < X;“, < 1 for some j. Let us show this
is only possible if M(:,i) = MX™*(:,i): assume M(:,i) #
MX*(:,i), we have

MG, i) — MX* (i) = (1 — XM, i) — MX*(Z,i),

where Z = {1,...,n} \ {i}. Increasing X7 to X;"j while

decreasing the entries of X*(Z, i) by the factor f = ;(i’ <1
decreases |M(:,i) — MX(:,i)|lc by a factor (1 — X7;) ()vhich
would be a contradiction since ||M — M X || would be reduced
(see above).

Finally, let us construct another optimal solution X T:*we
take X7 = X*, and for all j such that X} < Xl’.kj <1, X is
replaced with XiTj and X' (Z,i) is multiplied by the factor

X
B = X’?fj
the objective function might have only decreased: X' is an
optimal solution of (2) satisfying X;i = max; X:j hence is
also an optimal solution of (3).

< 1. The error |M — M X || remains unchanged while

APPENDIX B
PROJECTION ONTO Q

We now give the details for evalutating the Euclidean
projection onto the set €, see Section III-D. Note first that
it is sufficient to consider the problem of projecting a single
row of X, say, the first one, on the set

Q:={zelR [z1 <L, wix; <wj;z1},

since the the rows of X can be projected individually on Q
as they do not depend on each other in Q. Further we may
assume that w > 0 because w; = 0 removes all constraints
on x; for 2 < j <n,and w; for j # 1 fixes x; = 0 for any
point in ;. Similarly we can assume w.l.o.g. that x; > 0 for
2 < j < n,since x; < 0 fixes z; = 0 for any point in £
and does not affect the choice of the first coordinate. Note that
the norm we wish to minimize now is given by the standard
Euclidean norm x| = (3; sz.)%.

Let t € R be a parameter and denote by ¢, : R* — R”" the
mapping

t if j =1,

wj ..
—t if j # 1 and (8)
w1

w1 -,
Py
RIE=EE
0y

$i(x)j =

x;  else.

From the definition we see that for all x € R"” and all 7 € [0, 1]
we have that ¢ (x) € Q.

Unfortunately we cannot simply assume that 0 < x; < 1.
Treating the cases x; < 0, 0 < x; < 1 and 1 < xj
homogeneously puts a burden on the notation and slightly
obfuscates the arguments used in the following. We set
x1+ = min{1l, max{0, x1}} and x; := min{0, x1}.

Lemma 1: Let x € R", then

min|lx —z||= min |[x — ¢ (x)].
ZEQI|| l in Jlx — ¢ ()]l

telx;,1]
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In particular, if 7* =

2 < j <n that

argmin,cq [|x — zll, we have for

* * . *
wlzj < Ww;Zy lfwlxj- <w;zy
and
wlzjf =w;z] ifwix; > w;z].
Proof: Let z* = argmin_cq . We will show first that

nggllllx zl = ,g[‘éfll]”x ¢ (.

If wix; < wjz], it follows z;’f = xj, because only in this
case the cost contribution of the j-th coordinate is minimum
(zero). Otherwise, if wix; > wjo, the projection cost from
the j-th coordinate is minimized only if x; = Z—{zT, because
all the quantities involved are positive. It follows that z% =
¢zT (x);j for 2 < j < n. And since z] € [0, 1], it follows that
= argminte[o,uﬂx — g ()|l

To finish the proof, we will now show that z} > xf“, which
is trivial for the case x; < 0. In the case x; € [0, 1], we show
z’l" > x1. In order to obtain a contradiction, assume zT < X1,
and define z € Q by

. xp if j=1
T it AL
We compute
n n n
b —Zla =D ;=27 =D (xj — 2D < D _(x; —2)?
j=1 j=2 j=1
= llx — 2",

which contradicts the optimality of z*.
In the case x; > 1, a similar reasoning shows that z’l" > 1
(in fact z§ = 1). O
The previous lemma shows that the optimal projection can
be computed by minimization of a univariate function. We
will show next that this can be done quite efficient. For a
given x € R"” we define the function

cx i lxp, 00— R, s flx — g ()%

By Lemma 1, the (squared) minimum projection cost is given
by the minimum of ¢, |[x1+ 1» and our next step is to understand

the behavior of ¢, (see Fig. 5).

In order to simplify the notation in the following, we
abbreviate b; = :f))—'_x j and assume that the components of
x are ordered so that b, < by < --- < b,, and since x; >0
for 2 < j < n, we have in fact that

X, =1b1 =0<by<b3<---<by. 9)

Lemma 2: Let x € R".

(i) The function cx is a piecewise C™ function with C!
break points bj, and each piece cx|(p,pyy) IS Strongly
convex. In particular, cy is strongly convex and attains
its minimum.

1.3

1.2

11 F

Fig. 5. Example for the minimization of ¢, (n = 6). Black squares indicate
the break points and the discs show the location of the trial values f; from (12).
The optimal projection is realized by 74 and the set of optimal active indices
are the two break points to the right of 74.

(ii) Let t* = argmin [ Cx (1), the optimal projection of

telx; ,00
x on Qp is
$ur (0) i 1F <x,
argmin g [Ix —zll = ¢ (x) if t* € [x;, 1] or
¢i1(x) if 1 <t*.

(10)

Proof: We show (i) first. Using the definition (8), we
compute for x € R" and r € [by, oo

cx() = lIx =g @I = 1 =02 + D7 (= G,

JEB()

where
B(t):={l<j<n|t<bhj},

from which we see that ¢, is piecewise smooth and continu-
ously differentiable at the points b;. For a point ¢ €]by, by+1[,
we see that ¢/ (r) > 0 which shows strong convexity on each
piece. But ¢ is continuous at each bj, so c, is strongly
convex on all of [by, co[. Finally, since lim;_ o cx(t) =
lim;— oo (X1 —t)2 = 00, we see see that ¢, attains its minimum.

The assertions in (ii) follow directly from Lemma 1 and the
convexity of cy. 0

Since ¢, attains its minimum at t* € [by, oo[, we have that
either t* € [by, by], t* €lby, bg+1], for some 2 < k < n, or
t* €]by,, oo[. By the definition of ¢;, the constraints wix; <
w;x corresponding to break points b; > t* are “active” at
the point ¢+ (x), while all other constraints are not active.
More formally, in each of the cases in (11), we can uniquely
associate a set of optimal active indices B* C {2,...,n} as
follows (here 2 <k <n — 1):

By :={2,...,n} iff t* € [by,br] =: Ty
By :=1{k+1,...,n} iff t* €lby, bp1] =: Ty
B, = iff t* €]b,, oo[=: T,,.

B* = (an



Algorithm 2 Euclidean Projection on Q
Ty, > 0,0 < w e R™, heap

Require: z € R” with o, ..
data structure h
Ensure: z € )y with || — z||2 minimal
1: 2] < max{0,z,}
B+ {2<j<n|af <9y <1}
B e {2<)<n| By > 1)
D p & wiry + ZjeB* W;T ;5
q < wi+ ZjeB* wjz»
t <+ wlg
. initheap(h, {¥tx; | j € B}) % Operation linear in |B|.
. while h # § and ¢ < findmin(h) do
M <+ extractmin(h)
Let 2 < j < n such that M corresponds to %
B* « B*U{j} ’
p<—p+ W;T;
g q+w;
t < wlg
: end while
AR e 1
. 21 + min{1l, max{0,t}} {See (10)}
: for all j € B* do
zj < 21~ {See (8)}
. end for

© 0 N A W N
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The preceding observation yields an efficient “dual” algo-
rithm for minimizing ¢, over [by, co[, which we develop in
the following lemma.

Lemma 3: Letx € R", and t* = argmin, ¢ oo lx =& (X)]],
denote the set of active indices corresponding to t* by
B*={1<j<n|b;>t"}, and set

w1x1+zj63k w;x;
2 2
wi + 2 jep, Wi
If ty € Tx, then t* =ty (and B* = By).

Proof: Let 1 <k < n. In order to minimize the strongly
convex function

cx(t) = r =17 + D (xj — 2y,

J€Bk

th = w1 , 1 <k<n.

one simply solves ¢’ (t) = 0 for 7, and obtains expression (12).
So # is the minimum of ¢, under the hypothesis that By is the
correct guess for B*. But by (11) we have that By = B* if,
and only if, #x € Tk, which gives a trivially verifiable criterion
for deciding whether the guess for B* is correct. (]

The algorithmic implication of this lemma is as follows.
Since we know that one of the sets By, ..., B, must be the
optimal active set B*, we simply compute for each such set By
the corresponding optimal point from (12) until we encounter
a point #; € Ty, which then is the sought optimum.

Theorem 4: The Euclidean projection of X € R™" on Q
can be computed in O (n2 log n)

Proof: The projection cost for each row of X amounts to
evaluating (12) for each of the sets By until the optimal set of
active indices is identified. If the sets By are processed in the
ordering By, B,—1, ..., B], the nominator and denominator

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

in (12) can be updated from one set to the next, resulting
in a computation linear in n. The only non-linear cost per row
is induced by sorting the break points of ¢, as in (9), which
can be done in O (nlogn), and results in the stated worst-case
complexity bound. 0

The function ¢, is shown in Fig. 5 for a randomly chosen
vector x and weights w. In this example, the sets Bg, Bs
and By are tested for optimality; the corresponding values #
are indicated in the plot.

Remark 3: In an implementation of the outlined algorithm
it is not necessary to sort all the break points of c for a row
x of X as in (9). Only the break points b; € [xfr, 1] need
to be considered, as all other break points are either never
(if b; < x1+) or always (if bj > 1) in the optimal set B* of
active indices. Denote k| the number of break points in [fo, 1]
and ky := |B*|. If the indices are not sorted but maintained
on a heap (see, e.g., [33]), the cost overhead for sorting is
reduced to O (kologky). Hence the overall complexity for
projecting a single row is O (n + kylogky). The resulting
algorithm is sketched in Algorithm 2. Asymptotically it still
has the worst case complexity of O (nlogn) as we may need
to extract all n possible elements from h, but it should run
much faster in practice.
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